hpipy.utils.metrics.series_accuracy#
- class hpipy.utils.metrics.series_accuracy(series_obj, test_method='insample', test_type='rt', pred_df=None, smooth=False, summarize=False, in_place=False, in_place_name='accuracy', **kwargs)[source]
Bases:
Calculate the accuracy for a series of indices.
- Parameters:
series_obj (BaseHousePriceIndex) – Series object.
test_method (str, optional) – Testing method. Defaults to “insample”. Also supports “kfold” or “forecast”.
test_type (str, optional) – Testing type. Defaults to “rt”.
smooth (bool, optional) – Smooth the index. If True, the revision is calculated based on the smoothed indices. Defaults to False.
summarize (bool, optional) – Summarize the accuracy. Defaults to False.
in_place (bool, optional) – Return accuracy in-place. Defaults to False.
in_place_name (str, optional) – In-place attribute name. Defualts to “accuracy”.
pred_df (TransactionData | DataFrame | None)
kwargs (Any)
- Returns:
- Series object containing the
accuracy or DataFrame.
- Return type:
BaseHousePriceIndex | pd.DataFrame
- __call__(**kwargs)
Call self as a function.
- __init__(**kwargs)