hpipy.utils.metrics.accuracy#
- class hpipy.utils.metrics.accuracy(hpi_obj, test_method='insample', test_type=None, pred_df=None, smooth=False, in_place=False, in_place_name='accuracy', **kwargs)[source]
Bases:
Calculate the accuracy of an index.
- Parameters:
hpi_obj (BaseHousePriceIndex) – Index object.
test_method (str, optional) – Testing method. Defaults to “insample”. Also supports “kfold”.
test_type (str, optional) – Testing type. Defaults to None. If None, the test_type is inferred from the index object.
pred_df (TransactionData | pd.DataFrame | None, optional) – Prediction data. Defaults to None.
smooth (bool, optional) – Smooth the index. If True, the revision is calculated based on the smoothed indices. Defaults to False.
in_place (bool, optional) – Return accuracy in-place. Defaults to False.
in_place_name (str, optional) – Name of the attribute to store the accuracy in. Defaults to “accuracy”.
**kwargs – Additional keyword arguments.
- Returns:
- Index object containing the
accuracy or DataFrame.
- Return type:
BaseHousePriceIndex | pd.DataFrame
- __call__(**kwargs)
Call self as a function.
- __init__(**kwargs)