hpipy.utils.metrics.accuracy#
- class hpipy.utils.metrics.accuracy(hpi_obj, test_method='insample', test_type=None, pred_df=None, smooth=False, in_place=False, in_place_name='accuracy', **kwargs)[source]
- Bases: - Calculate the accuracy of an index. - Parameters:
- hpi_obj (BaseHousePriceIndex) – Index object. 
- test_method (str, optional) – Testing method. Defaults to “insample”. Also supports “kfold”. 
- test_type (str, optional) – Testing type. Defaults to None. If None, the test_type is inferred from the index object. 
- pred_df (TransactionData | pd.DataFrame | None, optional) – Prediction data. Defaults to None. 
- smooth (bool, optional) – Smooth the index. If True, the revision is calculated based on the smoothed indices. Defaults to False. 
- in_place (bool, optional) – Return accuracy in-place. Defaults to False. 
- in_place_name (str, optional) – Name of the attribute to store the accuracy in. Defaults to “accuracy”. 
- **kwargs – Additional keyword arguments. 
 
- Returns:
- Index object containing the
- accuracy or DataFrame. 
 
- Return type:
- BaseHousePriceIndex | pd.DataFrame 
 - __call__(**kwargs)
- Call self as a function. 
 - __init__(**kwargs)