hpipy.extensions.RandomForestModel.fit#

RandomForestModel.fit(dep_var=None, ind_var=None, estimator='pdp', log_dep=True, n_estimators=100, quantile=None, random_seed=0, **kwargs)[source]#

Fit the random forest model and generate index coefficients.

Parameters:
  • dep_var (str | None, optional) – Dependent variable. Defaults to None.

  • ind_var (list[str] | None, optional) – Independent variable(s). Defaults to None.

  • estimator (str, optional) – Estimator type. Defaults to “pdp”.

  • log_dep (bool, optional) – Log transform the dependent variable. Defaults to True.

  • n_estimators (int, optional) – Number of estimators. Defaults to 100.

  • quantile (float | None, optional) – Quantile to compute. Defaults to None.

  • random_seed (int, optional) – Random seed to use. Defaults to 0.

  • kwargs (Any)

Returns:

Fitted model.

Return type:

Self