hpipy.price_model.RepeatTransactionModel#
- class hpipy.price_model.RepeatTransactionModel(hpi_data, **kwargs)[source]
- Bases: - BaseHousePriceModel,- TimeMatrixMixin- Repeat transaction house price model. - Methods - Initialize base house price model. - Create a time matrix from a dataframe of repeat transactions. - Fit the repeat transaction model and generate index coefficients. - Attributes - Parameters:
- hpi_data (TransactionData) 
- kwargs (Any) 
 
 - fit(estimator='base', log_dep=True, **kwargs)[source]
- Fit the repeat transaction model and generate index coefficients. 
 - __init__(hpi_data, **kwargs)
- Initialize base house price model. - Parameters:
- hpi_data (TransactionData) 
- kwargs (Any) 
 
- Return type:
- None 
 
 - create_time_matrix(repeat_trans_df)
- Create a time matrix from a dataframe of repeat transactions. - This function assumes the dataframe contains columns “period_1” and “period_2” that represent a pair of repeat transactions. The resulting dataframe consists of rows for each transaction pair and columns for each time period, with -1 indicating the first transaction in a pair, 1 indicating the second transaction in a pair, and 0 otherwise. - Parameters:
- repeat_trans_df (pd.DataFrame) – Input DataFrame. Must contain “period_1” and “period_2” columns containing integer values representing periods (i.e., time series expressed as integer). 
- Returns:
- DataFrame with columns ‘time_x’, where each row
- represents a transaction pair and ‘x’ is a time period between the minimum and maximum periods in the input data. 
 
- Return type:
- pd.DataFrame 
 
 - coefficients: DataFrame
 - model_obj: Any
 - periods: DataFrame
 - base_price: float