Data Format#

Your input data should be a pandas DataFrame with the following columns:

  • A date column (e.g., “sale_date”)

  • A price column (e.g., “sale_price”)

  • A property identifier column (e.g., “pinx”)

  • A transaction identifier column (e.g., “sale_id”)

Example data structure:

>>> import pandas as pd
>>> from hpipy.datasets import load_ex_sales
>>> df = load_ex_sales()
>>> df.iloc[:, :4].head()
           pinx      sale_id  sale_price  sale_date
0  ..0007600046   2011..2621      308900 2011-02-22
1  ..0007600054  2010..16414      369950 2010-08-24
2  ..0007600057  2014..23738      520000 2014-08-05
3  ..0007600057  2016..28612      625000 2016-08-22
4  ..0007600065  2014..15956      465000 2014-06-05