Revision Metrics ================ Revision metrics assess how index values change as new data becomes available. We will demonstrate how to calculate and visualize revision metrics. Basic Setup ----------- First, we will import the necessary modules and load some sales data and create a series of indices: .. code-block:: python >>> from hpipy.datasets import load_seattle_sales >>> from hpipy.price_index import RepeatTransactionIndex >>> df = load_seattle_sales() >>> hpi = RepeatTransactionIndex.create_index( ... trans_data=df, ... prop_id="pinx", ... trans_id="sale_id", ... price="sale_price", ... date="sale_date", ... periodicity="M", ... estimator="robust", ... log_dep=True, ... smooth=True, ... ) >>> hpi_series = hpi.create_series(train_period=24, max_period=30) Calculating Revision -------------------- Calculate the revision of the index using the ``revision`` function: .. code-block:: python >>> from hpipy.utils.metrics import revision >>> rev = revision(hpi_series) >>> rev.round(5).head() period mean median 0 1 0.00000 0.00000 1 2 -0.16127 -0.24276 2 3 -1.10777 0.03733 3 4 -2.15903 -1.22027 4 5 -1.57049 -1.09691