Source code for hpipy.datasets._base

import importlib.resources as pkg_resources

import pandas as pd


[docs] def load_ex_sales() -> pd.DataFrame: """Load example home sales dataset. Returns: pandas.DataFrame: A DataFrame with house sales. Example: >>> from hpipy.datasets import load_ex_sales >>> df = load_ex_sales() >>> df.head() pinx sale_id sale_price ... eff_age longitude latitude 0 ..0007600046 2011..2621 308900 ... 12 -122.302032 47.603913 1 ..0007600054 2010..16414 369950 ... 103 -122.302030 47.603044 2 ..0007600057 2014..23738 520000 ... 112 -122.302114 47.602875 3 ..0007600057 2016..28612 625000 ... 114 -122.302114 47.602875 4 ..0007600065 2014..15956 465000 ... 0 -122.297278 47.601812 """ with pkg_resources.files("hpipy.datasets.data").joinpath("ex_sales.csv").open("r") as f: return pd.read_csv(f, parse_dates=["sale_date"])
[docs] def load_seattle_sales() -> pd.DataFrame: """Load Seattle home sales dataset. Returns: pandas.DataFrame: A DataFrame with house sales. Example: >>> from hpipy.datasets import load_seattle_sales >>> df = load_seattle_sales() >>> df.head() pinx sale_id sale_price ... eff_age longitude latitude 0 ..0001800010 2013..2432 289000 ... 6 -122.312491 47.561380 1 ..0001800066 2013..21560 356000 ... 87 -122.322007 47.550353 2 ..0001800075 2010..24221 333500 ... 80 -122.311654 47.561470 3 ..0001800075 2016..6629 577200 ... 86 -122.311654 47.561470 4 ..0001800080 2012..9521 237000 ... 72 -122.309695 47.561472 """ with pkg_resources.files("hpipy.datasets.data").joinpath("seattle_sales.csv").open("r") as f: return pd.read_csv(f, parse_dates=["sale_date"])